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The scaling properties of a sandpile-type system which displays self-organized criticality are inves-
tigated analytically and numerically in two and three dimensions. An earlier clump-based analytical
model is modified and extended to account for the scalings and probability distributions of avalanche
size, radius, duration, and maximum power in this system, and the scalings of the avalanche sizes
with parameters of the driving and system size are also investigated in detail. Comparison with
numerical results shows that this model can account for the probability distributions and scaling
exponents of both scalar and vector fields in two and three dimensions, once one basic exponent has

been determined numerically or by other means.

PACS number(s): 05.50.+q, 05.70.Jk

I. INTRODUCTION

Sandpile-type models of self-organized criticality
(SOC) have been studied extensively since their intro-
duction by Bak et al. [1]. These models display a unique
critical state in which a statistical balance is reached be-
tween driving and relaxation via avalanches and in which
power-law correlations in space and time are observed.

The key properties of the SOC state are the scaling
exponents of various measurable quantities. These ex-
ponents have been studied in a variety of sandpile-type
models by analytic means, and using numerical simula-
tions based on cellular automatons [1-14]. In particu-
lar, Zhang [4] developed a simple analytic model which
was able to explain a number of the observed exponents,
while Hwa and Kardar [6] used renormalization group
theory to make similar estimates for a related continuum
model. Exponents for the scaling of rms field compo-
nents in vector-field SOC were also recently derived [14].
In general, the exponents derived for the various models
differ from one another, implying that they are in differ-
ent universality classes.

In this paper we modify and extend Zhang’s [4] theory
to treat scalar- and vector-field SOC using a model in-
troduced in a previous work [14]. The focus of that work
was on the effects of vector fields and random driving on
the properties of the SOC state, and numerical work was
restricted to two-dimensional systems. Here, our empha-
sis is on generalizing previous clump-based models [4,14]
to calculate the probability distributions and scaling ex-
ponents for avalanche size, radius, duration, and peak
power dissipation, and for rms vector-field components.
Extensive comparison here with numerical results in two
and three dimensions shows that the resulting clump-
based theory can account for all the observed exponents,
once one basic exponent has been determined numeri-
cally or by other means. This work thus extends and
further verifies the clump-based analysis.
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II. THE MODEL

The model used here [14] involves a D-component vec-
tor field h defined on a two- or three-dimensional rectan-
gular grid of side N. The driving step consists of adding
a field increment (analogous to a sand grain) g to a ran-
domly chosen site, with

h—-h+g, (1)

at that site. The increment g is a random variable, with
the means of its components satisfying

= {4

at every site. Each component of g also has an addi-
tive random part uniformly distributed between —A and
A. The choice of g; to be the only component with a
nonzero mean involves no loss of generality because the
coordinates defining the field components can always be
rotated to bring (g) into the form given by (2).

Relaxation occurs when the addition of a grain causes
h = |h| to exceed a critical value, which we set equal to
unity without loss of generality. The field at the unstable
site then relaxes to zero, with its original value being
equally distributed to its 2d nearest neighbors, where d
is the dimensionality of the system, thereby conserving h
in this step. Some of these neighbors may then become
unstable and relax in turn (with all unstable sites relaxing
simultaneously), followed by relaxations of more distant
sites. Relaxation is allowed to proceed until all sites are
stable before the next field increment is added.

The (open) boundary condition used is that h = 0 for
all sites on the edge of the grid. In the case of a sandpile,
for example, this implies that grains that reach the edge
fall off and leave the pile, thereby enabling a statistically
steady state to be attained.

In our model, the size s of the avalanche is defined to

n=1
n>1 (2)
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be the total number of different sites to undergo relax-
ation, while the activation number a is the total number
of relaxations, accounting for multiple relaxations at a
given site (some authors call a the size). The duration ¢
of the avalanche is the total number of iterations required
for the system to become stable once an avalanche starts.
We define the radius r to be

d
= —la Z max(R,) — min(R,)], (3)

where the maximums and minimums are taken over
all sites (at locations R) that are active during the
avalanche, 1o = 7~ /2 in two dimensions (2D), and

= (3/4m)'/3 in three dimensions (3D). This defini-
tion uses the “taxicab” metric for computational speed,
coincides with the usual Euclidean radius if the avalanche
is spherical, but is only approximately (2d)~! times the
chain length for a straight linear chain. Note that the
value of 7 is chosen to give a single-site avalanche a ra-
dius equal to that of a d sphere of unit volume. The
maximum power p (a quantity of interest in some astro-
physical applications [12], for example) is defined to be
equal to the maximum number of sites simultaneously
active during the avalanche.

III. THEORY AND NUMERICAL RESULTS

In this section we explore the scaling properties of
scalar SOC, followed by a brief discussion of the vector
case. Both two- and three-dimensional systems are inves-
tigated, with the theory being developed and numerically
verified in parallel. We restrict attention to A%/u < 100
throughout, in accord with Robinson’s work [14], which
found that SOC breaks down for A?/u > 100.

A. Scalings with avalanche size

After addition of a large number of field increments, a
system defined by the above model settles into a statis-
tically steady SOC state. Zhang [4] proposed a theory of
this state for a related model, using an approximation to
the behavior of individual avalanche clusters. In his the-
ory he assumed that the avalanches are d-dimensional
compact objects (possibly with rough boundaries, al-
though this effect was not considered in detail). Because
a site that has just been activated is less likely than av-
erage to reactivate on the next step, he introduced an
effective repulsive potential between recently active sites,
which have density p = t/s, by analogy with the theory
of self-avoiding walks [15,16]. This led to the scalings

r~ s/, (4)
t ~ p(2+d)/3 s(2+d)/3d’ (5)
p~ r2(1—d)/3' (6)

Figures 1(a) and 1(b) show scatter plots of 7 vs s in 2D
and 3D systems, respectively, for the present model. The
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FIG. 1. Scatter plots of r vs s for (a) d = 2, D = 1,
N =200, p = 0.16,and A = 0.4; (b) d =3, D = 1, N = 80,

p=0.32, and A = 0.4.

lower boundary of the occupied region in Fig. 1(a) corre-
sponds very closely to the (taxicab) radius rmi, ~ ros'/¢
of the most compact cluster of the relevant size (i.e., a
sphere for large r), and there is only a factor of < 2 scat-
ter above this curve, decreasing slightly at large s. This
evidence strongly supports Zhang’s contention that the
avalanche clusters are compact and two dimensional in
this case. The corresponding 3D situation is shown in
Fig. 1(b): at small s the data are scattered between the
radius of the most compact cluster possible and the ab-
solute upper bound r = rg + (s — 1)/2d for a connected
cluster. At larger s the data points are scattered within a
factor of ~ 2 of the lower bound, with somewhat greater
spread than in 2D. This indicates that the clusters have
more diffuse boundaries than in 2D, but that their di-
mensionality remains close to d. Upon introducing the
notation Q ~ s%2 for the scaling of an arbitrary quantity
Q with s, the numerical scalings extracted from Figs. 1(a)
and 1(b) are §, = 0.50 £ 0.01 in 2D and 4, = 0.34 +£0.04
in 3D, in good agreement with (4).

Figure 2 comprises scatter plots of t vs s in 2D and 3D
systems for the same parameters used in Fig. 1, with ¢
satisfying the inequalities

max(rmin, 1) <t < s. (7)

The data points generally lie well clear of both bounds
for s 2 20. In this range Fig. 2 yields §; = 0.64 £+ 0.03 in
2D and 8; = 0.52 £ 0.03 in 3D, in reasonable agreement
with (5). These values also agree with earlier results for
related models [2,3].

The increase in the total activation number a with time
has two parts: new sites are activated at the boundary
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FIG. 2. Scatter plots of t vs s for the same parameters as
Fig. 1. (a)d=2. (b) d = 3.

of the avalanche as s increases, and old sites reactivate
within the avalanche cluster. If we extend Zhang’s theory
by assuming a uniform density p’ of active sites within
an avalanche cluster, we find

ds ,0s

= = — 8
da ,0s ,
o = Adar' g s (9)

where A4 is a d-dependent constant and the 8s/8r terms
describe expansion of the cluster boundary. Equations

(5), (6), and (8) yield

pl ~ 8(l—d)/.'sd ~ p1/2. (10)
Similarly, taking the ratio of (9) to (8) and integrating
with respect to s, we predict

a= s, ssmall (11)
an~s@+D/d g large. (12)

Robinson [14] found a =~ s for s < 100, and §, =
1.52+0.10 for s 2 300 in 2D [see Fig. 3(c)], in agreement
with (11) and (12). Likewise, the scatter plot in Fig. 3(b)
yields a = s for s < 103 and 8, = 1.27+0.07 for s = 10%,
also in good accord with theory. The crossover points
s = 8. between the large- and small-s regimes in (11)
and (12) occur for A48s/8r =~ s. Inserting s. = 300
and s, = 5000 for the 2D and 3D crossover points, we
find A; = 5 and A3 =~ 3.5, with »r ~ 8 and r =~ 10,
respectively. This implies that active sites at the edges
of the cluster are three to five times more likely to acti-
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FIG. 3. Scatter plots of a vs s for the same parameters as
Fig. 1. (a)d=2. (b) d =3.

vate their nearest neighbors than are active sites in the
interior. This result is intuitively reasonable, because re-
cently activated sites are less likely to be near instability
than sites immediately outside the growing cluster. The
disparity is actually even larger than these numbers in-
dicate, given that boundary sites actually have at least
one interior site among their neighbors (for s > 1). Our
picture is thus that a increases almost entirely due to
the expansion of the cluster until, at the crossover point,
reactivations within the cluster begin to dominate.

The maximum power is a useful quantity measured
in some applications [12]. Our definition (see Sec. II)
implies that the power dissipation is proportional to the
right hand side of (9). Hence, the peak power p scales as

5 < e (13)

(2d+1)/3d
s , 8c<S8. (14)

s2(d-1)/3d
p~{

Figures 4(a) and 4(b) show scatter plots of p vs s in
2D and 3D, respectively. As expected from the theory,
breakpoints in Figs. 4(a) and 4(b) are seen at the same
values of s, as in Fig. 3. For large s these data yield
6p = 0.91 £0.10 and 6, = 0.75 £ 0.10 in 2D and 3D, re-
spectively, in good agreement with the theory. For small
s, the corresponding values are 0.43+0.02 and 0.4840.03,
respectively, both of which are somewhat higher than
predicted by theory, particularly in 2D. This may indi-
cate that the small-s regime is not unequivocally reached
or that the present form of the surface-area terms in (8)
and (9) requires some modification.
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FIG. 4. Scatter plots of p vs s for the same parameters as
Fig. 1. (a)d=2. (b) d=3.

B. Probability distributions

In the SOC state the probability distribution D(s) of
s scales as

D(s) ~ st 7. (15)

Robinson [14] found 7 = 2.23+£0.05 ford =2 and D = 1,
in agreement with earlier results for a related model [7].
Figure 5 shows D(s) vs s for d = 3 and D = 1 with
N = 80, o = 0.32, and A = 0.4. These data yield
T = 2.35 £ 0.05 for 10°% < s < 10%*. Zhang and co-
workers [4,13] argued for 7 = 3 — 2/d by noting that the
mean time-averaged transport current density j leaving
a given point scales as r1~¢, where r is the distance from
that point. This value of 7 accords with the d = 3 re-
sults obtained here, but disagrees unequivocally with the
d = 2 value. A justification for this disagreement can
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FIG. 5. Probability distribution D(s) vssford =3, D =1,
N =80, u = 0.32, and A = 0.4.

be seen by examining Zhang’s argument in more detail.
Generalizing his argument slightly, he essentially showed
that j can be written as

j= —dir /0°° D(r')F(r,r")dr', (16)

where F(r,r') is the mean local transport at a radius r
due to an avalanche of radius 7'. By making the step-
function approximation F(r,7’') = @(r' — r) he obtained
j < D(r) o< r1=% and then, using s ~ r¢, 7 = 3 — 2/d.
Unfortunately, this approximation is only fully justified
for avalanche clusters that can be modeled by d-spheres
with sharp edges. In general it is not possible to cal-
culate 7 from (16) without knowing the detailed struc-
ture of F(r,r'). Significantly, Zhang’s argument would
seem to imply a single universality class for sandpile mod-
els, whereas several have actually been observed [5,7,10].
Hence, we conclude that the structure of F(r,7’) can in-
deed be important. In what follows we use our numeri-
cally determined values of 7 as inputs to the remainder
of the theory; alternatively, a dynamical renormalization
group calculation could be used to calculate 7 from first
principles (e.g., [6]).

Once the scaling of a quantity Q with s is known the
scaling of the distribution D(Q) with @ can immediately
be written as

D(Q) ~ Q'7%e, (17)
with
ag =2+ (1 —2)/d0. (18)

Figures 6-9 show the distributions of 7, t, a, and p,
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FIG. 6. Probability distribution D(r) vs r for (a) d
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FIG. 7. Probability distribution D(t) vs t for the same pa-
rameters as Fig. 6. (a) d =2. (b) d=3.

respectively, in 2D [(a) frames] and 3D [(b) frames]. The
results in Fig. 6 yield a,, = 2.44+0.05 and a, = 2.8+0.1
in 2D and 3D, respectively. The 2D result is in excel-
lent agreement with the value of 2.46 £+ 0.10 obtained
from (18) using our numerical value of 7. The 3D value
is significantly lower than the corresponding estimate of
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FIG. 8. Probability distribution D(a) vs a for the same
parameters as Fig. 6. (a) d =2. (b) d = 3.
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FIG. 9. Probability distribution D(p) vs p for the same
parameters as Fig. 6. (a) d=2. (b) d =3.

3.05 &+ 0.15 obtained using 7; however, the range of the
power law is only one order of magnitude in this case,
making the fit less convincing. Simulations with larger
systems (N =~ 200) would be necessary to resolve this
point conclusively.

Figure 7 yields a; = 2.36 + 0.05 and a; = 2.62 £ 0.10,
in 2D and 3D, respectively, in good agreement with the
corresponding estimates (from the numerical value of 7)
of 2.35 + 0.04 and 2.68 + 0.09.

For s < s. (the value of a corresponding to s. can
be read off Fig. 3) Fig. 8 gives a, = 2.25 + 0.05 and
a, = 2.35 £ 0.05 in 2D and 3D, respectively, in excellent
agreement with the prediction a, = 7 in this regime.
There is insufficient range available with s > s, to es-
timate o, in the latter regime — scatter plots such as
Fig. 3 give more useful results at large a because they
do not require such good statistics to yield the relevant
exponent.

For s < s. Fig. 9 implies o, = 2.61 £+ 0.10 and
op = 2.82+0.05 in 2D and 3D, respectively. These val-
ues agree well with the theoretical predictions (using the
numerically determined value of 7) of 2.69 &+ 0.15 and
2.79 £ 0.11, respectively. However, as with Fig. 8, there
is too little range available to obtain an accurate value
of a, from Fig. 9 for s > s..

C. Scalings with system size and driving parameters

We now turn to examine the scaling of the means (over
all increments added) of s and a with N, u, and A. The
scalings with z and A do not appear to have been pre-
viously investigated for any model, certainly not for the
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present one. The scaling of (s) with N can be estimated
by noting that (s) is given by

Nd Nd
(s):[ sD(s)ds/ . D(s)ds. (19)

The finite-size cutoff in D(s) is a purely geometric effect.
For compact avalanches of dimension d this cutoff thus
occurs at s ~ N¢ and, hence,

(s) ~ N4G3=T), (20)

for 2 < 7 < 3. Using the above-determined values of 7,
we predict exponents of 1.54 £+ 0.10 and 1.95 £ 0.15, in
2D and 3D, respectively, consistent with the numerical
results shown in Fig. 10, which yield

(S) ~ N1.45:i:0.06’ (21)
<S> ~ N2.01ﬂ:0405’ (22)

respectively, where the errors here and below are from
least-squares fits. The mean size (s) thus increases more
slowly than the system size N¢ for d = 2,3. Note that
for (s) < 20 in 2D the slope of the (s) vs N plot changes
because of the restriction (s) < (a) (see next paragraph);
in 3D the corresponding change is too small to be dis-
cernable from Fig. 10.

The scaling (a) «« N? was determined by Kadanoff et
al. [5] and Tang and Bak [3], who argued that transport
proceeds diffusively, so that the mean number of relax-
ations required to transport a unit field increment to the
boundary must scale as N2. Numerically, we find

<a> ~ N1.995:i:0.004 (23)
<a> ~ N2.04:t0.04 (24)
in the present model in 2D and 3D, respectively, in agree-

ment with the theoretical prediction. The resulting scal-
ing

(s) ~ (@272, (25)

together with the requirement (s) < (a), implies 7 >
3 —2/d for large N, which is satisfied by the values of 7
found above.

<s>

10 100 1000
N

FIG. 10. Dependence of (s) on N for d = 2 (squares) and
d = 3 (triangles). Parameters other than N are the same as
in Fig. 1. Solid lines are least-squares lines of best fit.

Interestingly, if we calculate the mean of a from the
power-law part of D(a) and require {a) ~ N2 we ob-
tain o, = 3 — 2/(d + 1), which is inconsistent with the
numerical values obtained from Fig. 8. Thus it appears
that the power-law part of D(a) alone cannot be used
to calculate the scaling of (a) with N. The reason is
that the averages of a and s depend most strongly on the
large-a and large-s parts of the probability distributions,
respectively. Unlike s (which satisfies < N¢), a does not
have an absolute upper bound and so is more sensitive
to details of the behavior of D(a) at large a.

Theoretically, we expect

<a> ~ M (26)

because (i) the mean outward rate of transport across
the boundaries must equal the mean input rate, which
is proportional to g, (ii) the outward transport rate is
proportional to the number of activations on the bound-
aries, because each such activation transfers field across
the boundary, and (iii) the number of activations at the
boundaries is proportional to the total number of activa-
tions, averaged over all locations of the initially unstable
site. The scalings of (a) and (s) with g in 2D and 3D
are shown in Figs. 11(a) and 11(b), respectively. In 2D,
numerical values of the exponents for (s) and (a) vs p are
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FIG. 11. Dependence of (s) (squares) and (a) (triangles)
on p. Parameters other than p are the same as in Fig. 1.
Solid lines are least-squares lines of best fit. (a) d = 2 with
(s) fitted for p > 0.01. (b) d = 3 with the (s) data offset
downward by a factor of 2 for clarity.
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0.73 £+ 0.03 and 1.014 =+ 0.015, respectively, in excellent
agreement with (25) and (26) using our numerical value
of 7. Likewise, the respective 3D exponents of 0.98+0.03
and 1.00 + 0.04 are in good agreement with theory.

The scalings of (s) with (a) in 2D and 3D are shown
in Figs. 12(a) and 12(b), respectively. For large (s)
in 2D we find an exponent of 0.76 + 0.02, numerically,
in agreement with (25). For small (s) the exponent is
0.973 4 0.008 in 2D, slightly below the theoretical value
of 1, but probably underestimated because of the prox-
imity of the breakpoint in the behavior of (s) and the
relatively small range of the fit. In 3D an exponent of
0.985+0.002 is found, fitted over the entire range shown,
with no discernable breakpoint. This compares well with
the theoretical values of 1 and 0.975+0.075 at small and
large (a), respectively.

The mean net rate of addition of field increments to
the system is independent of A, the randomness in the
driving. Hence, we predict that (a) and (s) should be
independent of A. This prediction is found to be borne
out by our numerical results for all values of A sufficiently
small that SOC is not significantly modified or destroyed
[14].
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1000.0
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0.1 1.0 10.0
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100.0

FIG. 12. Dependence of (s) on (a) from Figs. 11(a) and
11(b). Solid lines are least-squares lines of best fit. (a) d = 2,
with upper and lower fits for (a) > 10 and (a) < 3, respec-
tively. (b) d = 3; with a single line of best fit.

3925

1.000 T T

0.100

a(hy)

0.010

0.001 . L
0.001 0.010 0.100
My A

1.000

FIG. 13. Dependence of o(hz) on A (triangles) and p
(squares) in 3D with D = 2 and N = 40. The value of u
is fixed at 0.08 when determining the A dependence, while
A = 04 is fixed for the u dependence. Solid lines are
least-squares lines of best fit.

D. Vector-field scalings

We now consider the scaling of the variance of the com-
ponent h, for a vector field with D = 2 as a function of
p and A. Robinson [14] found that the component hq,
driven with nonzero mean increment, dominates the evo-
lution of the system, except for A2 2 300y, with the
other components slaved to it. By balancing the rate of
input of the variance 02(h2) against its loss across the
boundary he derived the scaling

o3 (hz) ~ A/ p. (27)
Numerically, he found

A1.98:l:0.02

2
0% (hg) ~ p1-01£0.03 7 (28)

for the present model in 2D, in good agreement with (27).
The corresponding results in 3D are presented in Fig. 13
for D = 2 and N = 40. We find

A2.00:!:0.03

2
o°(hs) ~ 110-93£0.07 " (29)

also in good agreement with (27).

IV. SUMMARY AND DISCUSSION

The scaling properties and probability distributions of
scalar and vector sandpile models have been investigated
in two and three dimensions in this work. Scaling expo-
nents and probability distributions for avalanche size, ac-
tivation number, radius, duration, and peak power have
been derived in terms of one basic exponent 7 by modi-
fying and extending Zhang’s [4] model to incorporate the
density of active sites. This generalization, and the ex-
tension of the numerical results to three dimensions when
verifying the theory, are the key results of the present
work.
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Extensive comparison with numerical results in 2D and
3D has yielded good agreement between theory and sim-
ulation for a wide range of exponents, thereby confirm-
ing the internal consistency of the clump-based model
for SOC and providing extensive confirmation of the val-
ues of 7. Significantly, in two dimensions, the value
T = 2.23 £ 0.05 is inconsistent with Zhang’s estimate
7 = 2. A reason for this discrepancy is suggested and it
is noted that Zhang’s original argument would have im-
plied only a single universality class for sandpile SOC in
two dimensions, contrary to numerical results from other
authors.

The scalings of average avalanche size and activation

number have been investigated as functions of the system
size and the driving parameters. Again, good accord be-
tween theory and numerical results is found. Vector-field
scalings in 3D are also found to conform with Robinson’s
earlier theory [14], previously confirmed only in the 2D
case.
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